Editorial

Particle Emissions from Wood Combustion

Wood combustion is considered as renewable and sustainable energy source. Wood is worldwide one of the most used fuel for heating and cooking. In residential areas of industrial countries several people use wood as fuel in boilers for central heating or for additional heating mainly in manually fed chimney stoves, tiled stoves and open fire places. Depending on the firing design, the fuel properties and the users' behaviour, the smoke of such wood-firings can cause high particle emissions [1], resulting in significant PM$_{10}$ concentrations in the ambient or even in the indoor air, which might cause considerable annoyance, complaints among the inhabitants and short and long term negative health effects.

More than 80 to 90% of the particles emitted from wood combustion are smaller than 1 µm aerodynamic diameter [2] and therefore inhalable and they are penetrating into the alveoles of the human breathing system comparable to fine particles of cigarette smoke. The particles consist of fly ashes on the one hand. They are originating from mineral contents of the burned wood and contain metal oxides and salts. On the other hand organic particles - soot and tar - are emitted during incomplete combustion of the wood. This can happen during manual and discontinuous feeding and operation of open fires, stoves and boilers operated with fuel wood. Reasons for incomplete combustion are instationary burning conditions caused by too much wood filled in the furnace, reduced combustion air supply or too low local combustion temperatures. In such cases, the volatile wood compounds do not burn properly but merely vaporise or pyrolyse partially and then condense in the flue gases. The condensate consists of high-molecular-weight hydrocarbons, including large numbers and high concentrations of polycyclic aromatic hydrocarbons (PAHs) that not only settle on the heat exchanger surfaces but also on emitted particles, particularly on soot. Therefore, smoke emitted from wood combustion can generate high concentrations of PAHs; for example total PAHs concentrations of 3000 µg/m3 and benzo(a)pyrene concentration of 60 µg/m3 have been measured in the flue gas emissions from small residential stoves [3] and total particulate matter (PM) emissions up to more than 1000 mg/m3. In contrast of that, modern residential wood boilers, which are automatically fed and controlled, as well as modern pellet stoves with continuous fuel feeding create particulate matter emissions that are formed mainly by vaporisation of ash particles; consequently, they have lower PAH emissions than manually fed boilers and wood stoves [1, 4].

Studies with PAH and other wood combustion tracer fingerprints showed that a considerable part of organic particles in the ambient air of residential areas has its origin in wood combustion [5, 6]. These particles contain several compounds of PAHs, half of them with carcinogenic
potential. Because of their carcinogenic effects, PAHs are now considered to be priority pollutants by both the United States Environmental Agency (USEPA) and the European Environmental Agency (EEA). In a German village with considerable wood combustion contribution for heating in winter months under strong inversion conditions relatively high total PAH concentrations from 30 ng/m3 as average up to 100 ng/m3 as peak values had been detected. The according benzo(a)pyrene concentrations ranged between 2 and 7 ng/m3 during these situations [7]. Finally it can be concluded that wood is a renewable fuel and its potential should be used for heating. But the most modern combustion techniques should be applied to avoid uncontrolled emissions of particulate matter containing unhealthy compounds.

Prof. Dr.-Ing. Günter Baumbach, University of Stuttgart
Institute of Combustion and Power Plant Technology
Dept. of Air Quality Control
Stuttgart, Germany
Guenter.Baumbach@ifk.uni-stuttgart.de

References

Further literature
Impact of particulate emissions from wood combustion on urban particulate matter concentrations

Jürgen Schnelle-Kreis, Helmholtz Zentrum München – German Research Center for Environmental Health. Email: juergen.schnelle@helmholtz-muenchen.de, Robert Kunde, Bavarian Center for Applied Energy Research (ZAE Bayern), and Gerhard Schmoeckel, Bavarian Environment Agency, Germany. This work was supported by the Bavarian State Ministry of the Environment and Public Health under grant U47.

The use of wood as renewable energy source is discussed contradictorily. On one hand the favourable CO2 balance does not enhance the global warming problem, whereas on the other hand biomass combustion significantly contributes to ambient particulate matter (PM) mass loading. Local wood combustion emits about the same amount of PM$_{10}$ (collective of particles smaller than or equal to 10 µm in an aerosol) as road traffic (combustion-derived emissions). While the tailpipe emissions are decreasing, the particulate emissions from wood combustion are further increasing.

The aim of the study presented here was to quantify the impact of wood combustion on urban PM$_{10}$ levels and composition [1, 2]. The investigation was carried out in Augsburg, Germany during the heating period 2007/2008. It consisted of four main parts: update of emission inventory for domestic heating, emission measurements, emission and aerosol dispersion modelling and ambient monitoring.

As a result from the updated emission inventory for domestic heating we registered about 14,200 fireplaces for solid fuel within Augsburg. The annual wood consumption within the city was calculated to add up to about 60,000 piled meters. The energy equivalent 395 TJ/a equates to 2.1 % of the annual energy consumption for domestic heating in the city. On the other hand, the total PM emissions from these sources accounted for about 38 t/a, which was about 35 % of total PM$_{10}$ emissions in Augsburg. An emission model and a wind field model were created for the modelling of the dispersion of emitted PM from wood combustion. The results of the dispersion calculation concurred with the ambient PM$_{10}$ monitoring data. One result was that in residential areas with a high density of stoves the observed maximum concentration from wood combustion particles was 9 µg/m3. This is up to 50 % higher than in the city centre. In average over the heating period in the residential area additional PM from wood combustion sources within the city was estimated to be 3 – 3.5 µg/m3, whereas in the city centre averages of 1 – 2 µg/m3 were found (Figure 1).

![Figure 1: Calculated additional ambient PM$_{10}$ load from wood combustion in Augsburg, Germany. Shown are average values in calculation cells (128 m x 128 m) during the heating period (November 2007 to March 2008). Dispersion model based on emission inventory for wood combustion stoves within the city area of Augsburg.](image-url)
Within the study, emission measurements (different stoves, fuels and burning conditions) were carried out. According to these measurements the average potassium and levoglucosan concentrations in PM emissions from domestic heating were 58 mg/g and 126 mg/g respectively. Based on these tracer concentrations, the fraction of ambient PM originating from (primary) wood combustion particles was calculated. The impact of wood combustion on ambient PM concentration and composition has been monitored simultaneously at five different characterised sites within the urban area and three sites in the suburban area on a daily basis.

At the traffic site in the city centre in average 3.4 µg/m³ (range 0.2 - 15.2 µg/m³) of PM derived from wood combustion. This corresponded to 8.4 % of the average PM concentrations at this site (range 1.9 - 30 %). Highest concentrations of PM from wood combustion were found during periods with low air exchange (low wind speed and low mixing layer height). In these periods up to 4 µg/m³ higher concentrations of particles from wood combustion were found in an inner city residential area compared to the city centre. Based on the measurements near the city and in 100 m above ground level, up to 75 % of the wood combustion particles could be assigned to local sources, depending on the meteorological conditions in the atmospheric boundary layer. The measurements supported the findings from dispersion modelling, which clearly demonstrated the coherence of high number of single-room stoves in the proximity and high concentrations of PM from wood combustion.

Measurements with time resolution of 3 h showed a clear diurnal variation with highest concentrations from primary wood combustion particles between 9 p.m. and midnight. Peak concentrations of up to 17.5 µg/m³ PM from wood combustion have been found in periods with low air exchange (Figure 2).

Together with high impact of PM from wood combustion, high concentrations of polycyclic aromatic hydrocarbons have been found. For benzo[a]pyren, a known carcinogen, average concentrations of 0.3 – 0.5 ng/µg PM from wood combustion have been found. This benzo[a]pyren/PM ratio consists both with measurements, which carried out the Bavarian Environment Agency in a northern provincial town in the heating period 2009/2010 [3] and the State Institute for Environment, Measurements and Nature in Tübingen in the heating period 2008/2009 [4]. The results enable to estimate, that the ambient air annual target value of 1 ng/m³ for benzo[a]pyren being effective from 2013 might be exceeded in regions with increased wood combustion installations and bad conditions of pollutant dispersion.
References

Publications and Resources

Healthy and Safe Homes. Research, Practice, and Policy

In November 2010, the National Center for Healthy Housing (NCHH), the Centers for Disease Control, and the Home Safety Council unveiled Healthy and Safe Homes: Research, Practice, and Policy at the American Public Health Association (APHA) Annual Meeting & Exposition in Denver, CO, USA. The book is the first of its kind, exploring connections between housing conditions and health, and proposing holistic, sustainable strategies for making healthy housing a reality for people of all income levels. “A healthy home is a first step in creating a nation of healthier people and we hope the strategic solutions offered in this book will help make healthy housing available for all,” said Rebecca Morley, executive director of the National Center for Healthy Housing and one of the book’s editors. Healthy and Safe Homes: Research, Practice, and Policy is published by American Public Health Association (APHA) Press and was selected as APHA’s November Book of the Month. Healthy and Safe Homes: Research, Practice, and Policy is available online at the APHA Bookstore, www.apha.org/publications/bookstore/.

National Center for Healthy Housing Joins Leading National Organizations to Launch Energy-PlusHealth to Support Low-Income Homeowners

New partnership aims to make healthy housing repairs and energy efficiency a reality for families in greatest need

The National Center for Healthy Housing (NCHH) is joining forces with Habitat for Humanity International, Rebuilding Together, and CLEARCorps to form EnergyPlusHealth, a coalition that will work towards making healthy and energy efficient housing more accessible to low income homeowners who can’t afford necessary repairs. The coalition will provide volunteers with the training and resources needed to make healthy and energy efficient repairs to homes in need, including repairs for structural issues, lead paint hazards, and mold and moisture issues. NCHH is leading the effort by developing a 2-day training course, which includes an assessment checklist for volunteers to use when evaluating homes for health hazards or energy deficiencies. The training will provide instructional worksheets with step-by-step instructions for repair, maintenance, or rehabilitation work that can be done onsite by volunteers and identify which tasks require skilled professionals. To learn more about the National Center for Healthy Housing, please visit, www.NCHH.org.

Cities and Climate Change

In November 2010, OECD (Organisation for Economic Co-operation and Development) has published a book on Climate Change that highlights the role of cities in delivering cost-effective policy responses to climate change. Cities are central to the climate policy challenge, as they are home to the majority
of global energy use and thus a large source of emissions. Also, their prevalent coastal locations, exposed infrastructure, and large number of poor and elderly residents make cities particularly vulnerable to sea level rise, storms and heat waves. This book draws on the findings of a number of projects at the OECD that have advanced the understanding of the roles that cities can play to respond efficiently and effectively to climate change. The executive summary and other relevant material from the book can be downloaded from the OECD website: www.oecd.org/gov/cities.

WHO | Health in the Green Economy

Many strategies to reduce climate change have large, immediate health benefits. Others may pose health risks or tradeoffs. Examined systematically, a powerful new dimension of measures to address climate change emerges. WHO's Health in the Green Economy Project, to be completed in Spring 2011, is reviewing the evidence about expected health impacts of greenhouse gas mitigation strategies - in light of those mitigation options that have been reviewed by the Intergovernmental Panel on Climate Change (IPCC) for key sectors of the economy. The aim is to suggest important health co-benefits for health and sectoral policy-makers, and for consideration in the next round of IPCC mitigation reviews. Opportunities for potential health and environment synergies are identified here for health sector facilities. The policy briefings summarize initial key findings from this project and can be downloaded from the WHO website: http://www.who.int/hia/green_economy/en/index.html.

Heating with wood

The revised brochure “heating with wood”, published by Umweltbundesamt (UBA), gives advice for save and sound heating with wood and informs about the new regulations, which have been available since march 2010. These regulations will contribute to the reduction of air pollutants when heating with wood. It gives advice for the low-polluting running of wood stoves or small wood boilers. The brochure can be download or ordered free of charge: http://www.umweltbundesamt.de/uba-info-presse/2010/pd10-050_weniger_schadstoffe_aus_kamin_und_kacheloefen.htm.

Electronic Faucets Unsafe for Use in High-Risk Patient Hospital Settings

Study Shows Automatic Faucets Carry High Levels of Bacteria - Researchers at The Johns Hopkins University School of Medicine have determined that electronic faucets are more likely to become contaminated with unacceptably high levels of bacteria, including Legionella spp., compared with traditional manually operated faucets. Exposure to Legionella spp. is dangerous for chronically ill or immune compromised patients because it may cause pneumonia in vulnerable patients. However, the levels found at Johns Hopkins Hospital were still within the level that is well tolerated by healthy individuals. Following the study, Johns Hopkins Hospital is replacing electronic faucets in clinical areas with manual faucets, and has decided not to install electronic faucets in clinical areas of its new hospital building now under construction. http://www.shea-online.org/Portals/0/Sydnor%20Final%203%2211.pdf.

German cabinet adopts act on special provisions for noise caused by children.

On February 16, 2011, the German cabinet adopted a draft act presented by the Federal Environment Ministry on special provisions for noise caused by children at childcare centres and play areas. “This act, which establishes special provisions for noise caused by children, sends a clear signal in support of a child-friendly society. A certain degree of tolerance for such noise can be expected from society. It is not acceptable to treat noise caused by children in the same way as noise caused by industrial installations”, commented Minister Röttgen. The aim of this act is to further develop existing noise protection law. An amendment to the Federal Immission Control Act (BlmSchG) will ensure that noise caused by children at childcare centres, play areas and at other such establishments is generally not classified as having "harmful effects on the environment". http://www.bmu.de/english/current_press_releases/pm/47035.php.
Literature

In this section we will provide a collection of recent housing and health publications from a variety of backgrounds. Literature published in German or French, respectively, is indicated with the German flag or the French flag.

If you have suggestions for interesting journals that we should screen for the literature collection, please let us know!

Table of Topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergies and Respiratory Diseases</td>
<td>7</td>
</tr>
<tr>
<td>Indoor Air</td>
<td>8</td>
</tr>
<tr>
<td>Mould and Dampness</td>
<td>13</td>
</tr>
<tr>
<td>Light and Radiation</td>
<td>13</td>
</tr>
<tr>
<td>Smoking / Environmental Tobacco Smoke</td>
<td>14</td>
</tr>
<tr>
<td>Home Safety</td>
<td>15</td>
</tr>
<tr>
<td>Housing and Ageing Society</td>
<td>16</td>
</tr>
<tr>
<td>Housing Conditions</td>
<td>16</td>
</tr>
<tr>
<td>Thermal Comfort / Energy</td>
<td>17</td>
</tr>
<tr>
<td>Urban Planning / Built Environment</td>
<td>18</td>
</tr>
<tr>
<td>Climate Change</td>
<td>20</td>
</tr>
<tr>
<td>Social Inequality</td>
<td>20</td>
</tr>
<tr>
<td>Noise</td>
<td>21</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>22</td>
</tr>
</tbody>
</table>

Allergies and Respiratory Diseases

Determinants of eczema: population-based cross-sectional study in Germany.
Apfelbacher CJ, Diepgen TL, Schmitt J.

Domestic cooking fuel exposure and tuberculosis in Indian women.
Behera D, Aggarwal G.

Gender differences in indoor allergen exposure and association with current rhinitis.
Bertelsen RJ, Instanes C, Granum B, Lødrup Carlsen KC, Hetland G, Carlsen KH, Mowinckel P, Løvik M.

Association between attendance of day care centres and increased prevalence of eczema in the German birth cohort study LISAplus.

Asthma and allergic diseases in school children from 1992 to 2007 with incidence data.
Demir AU, Celiikel S, Karakaya G, Kalyoncu AF.

Exposure to Environmental Microorganisms and Childhood Asthma.
Indoor air pollution and childhood asthma: variations between urban and rural areas.
Hulin M, Caillaud D, Annesi-Maesano I.

Intrauterine exposure to lead may enhance sensitization to common inhalant allergens in early childhood: a prospective prebirth cohort study.

PVC--as flooring material--and its association with incident asthma in a Swedish child cohort study.

IgE response to Ascaris lumbricoides in Russian children indicates IgE responses to common environmental allergens.
Koskinen JP, Laatikainen T, von Hertzen L, Vartiainen E, Haataela T.
Allergy. 2011 Mar 3. [Epub ahead of print].

The National Asthma Survey--New York State: association of the home environment with current asthma status.
Nguyen T, Lurie M, Gomez M, Reddy A, Pandya K, Medvesky M.

Quality-of-Life and Cost-Benefit Analysis of a Home Environmental Assessment Program in Connecticut.
Nguyen KH, Boulay E, Peng J.

Pet dander and difficult-to-control asthma: The burden of illness.
Ownby DR.

Respiratory disease associated with solid biomass fuel exposure in rural women and children: systematic review and meta-analysis.
Po JY, FitzGerald JM, Carlsten C.

Socioeconomic factors and home allergen exposure in children with asthma.
Ungar WJ, Cope SF, Kozyrskyj A, Paterson JM.

Indoor allergen levels in Guangzhou city, southern China.
Zhang C, Gjesing B, Lai X, Li J, Spangfort MD, Zhong N.

Home air-conditioning, traffic exposure, and asthma and allergic symptoms among preschool children.
Zuraimi MS, Tham KW, Chew FT, Ooi PL, Koh D.

Indoor Air

Better burning, better breathing: improving health with cleaner cook stoves.
Adler T.

Effect of an air cleaner with electrostatic filter on the removal of airborne house dust mite allergens.
Agrawal SR, Kim HJ, Lee YY, Sohn JH, Lee JH, Kim YJ, Lee SH, Hong CS, Park JW.
Characterization of particulate matter size distributions and indoor concentrations from kerosene and diesel lamps.

Organophosphate and phthalate esters in air and settled dust - a multi-location indoor study.
Bergh C, Torgrip R, Emenius G, Ostman C.
Indoor Air. 2011 Feb;21(1):67-76.

Endocrine damper? Flame retardants linked to male hormone, sperm count changes.
Betts KS.

Health ranking of ingested semi-volatile organic compounds in house dust: an application to France.
Bonvallot N, Mandin C, Mercier F, Le Bot B, Glorennec P.

Effects of socioeconomic factors and human activities on children's PM(10) exposure in inner-city households in Korea.
Byun H, Bae H, Kim D, Shin H, Yoon C.
Int Arch Occup Environ Health. 2010 Dec;83(8):867-78.

Lead and bisphenol A concentrations in the Canadian population.
Bushnik T, Haines D, Levallois P, Levesque J, Van Oostdam J, Viau C.

Isolation and characterization of Acanthamoeba spp. from air-conditioners in Kuala Lumpur, Malaysia.
Chan LL, Mak JW, Low YT, Koh TT, Ithoi I, Mohamed SM.

Exploring variation and predictors of residential fine particulate matter infiltration.

Effects of HUD-supported lead hazard control interventions in housing on children's blood lead.

Influence of air flow rate on emission of DEHP from vinyl flooring in the emission cell FLEC: Measurements and CFD simulation.

Where's the dust? Characterizing locations of azinphos-methyl residues in house and vehicle dust among farmworkers with young children.
Coronado GD, Griffith WC, Vigoren EM, Faustman EM, Thompson B.

Oxidative Stress, DNA Damage, and Inflammation Induced by Ambient Air and Wood Smoke Particulate Matter in Human A549 and THP-1 Cell Lines.

Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards.
Delgado-Saborit JM, Stark C, Harrison RM.
Relationship of personal exposure to volatile organic compounds to home, work and fixed site outdoor concentrations.
Delgado-Saborit JM, Aquilina NJ, Meddings C, Baker S, Harrison RM.

Chemical speciation and bioaccessibility of lead in surface soil and house dust, Lavrion urban area, Attiki, Hellas.
Demetriades A, Li X, Ramsey MH, Thornton I.

Estimation of daily intake of organohalogenated contaminants from food consumption and indoor dust ingestion in Romania.
Dirtu AC, Covaci A.

Blood lead levels of refugee children resettled in Massachusetts, 2000 to 2007.
Eisenberg KW, van Wijngaarden E, Fisher SG, Korfmacher KS, Campbell JR, Fernandez ID, Cochran J, Geltman PL.

Indoor and outdoor air concentrations of BTEX and determinants in a cohort of one-year old children in Valencia, Spain.
Esplugues A, Ballester F, Estarlich M, Llop S, Fuentes-Leonarte V, Mantilla E, Iñiguez C.

Indoor Coal Use and Early Childhood Growth.
Ghosh R, Amirian E, Dostal M, Sram RJ, Hertz-Picciotto I.

Predictors of indoor air concentrations in smoking and non-smoking residences.

Association of indoor air pollution with rhinitis symptoms, atopy and nitric oxide levels in exhaled air.
Hersoug LG, Husemoen LL, Thomsen SF, Sigsgaard T, Thuesen BH, Linneberg A.

Impact of Prenatal Exposure to Piperonyl Butoxide and Permethrin on 36-Month Neurodevelopment.
Horton MK, Rundle A, Camann DE, Barr DB, Rauh VA, Whyatt RM.

Formaldehyde interferes with airway epithelium integrity and functions in a dose- and time-dependent manner.
Kastner PE, Casset A, Pons F.

Deposition and spatial distribution of insecticides following fogger, perimeter sprays, spot sprays, and crack-and-crevice applications for treatment and control of indoor pests.
Keenan JJ, Ross JH, Sell V, Vega HM, Krieger RI.

Childhood obesity and environmental chemicals.
La Merrill M, Birnbaum LS.

(222)Rn concentration in public secondary schools in Galicia (Spain).
Llerena JJ, Cortina D, Durán I, Sorribas R.
Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.

Do questions reflecting indoor air pollutant exposure from a questionnaire predict direct measure of exposure in owner-occupied houses?

Potential effects of particulate matter from combustion during services on human health and on works of art in medieval churches in Cyprus.

Effectiveness of UV-C equipped vacuum at reducing culturable surface-bound microorganisms on carpets.

Occurrence of cyclic and linear siloxanes in indoor dust from China, and implications for human exposures.

Formaldehyde measurements in residential indoor air using a developed sensor element in the Kanto area of Japan.

House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters.

Association between indoor air pollution measurements and respiratory health in women and children in Lao PDR.

Pollutant concentrations within households in Lao PDR and association with housing characteristics and occupants' activities.

Modelling inhalation exposure to combustion-related air pollutants in residential buildings: Application to health impact assessment.

Ultrafine particle concentrations and exposures in six elementary school classrooms in northern California.
Mullen NA, Bhangar S, Hering SV, Kreisberg NM, Nazaroff WW. Indoor Air. 2011 Feb;21(1):77-87.

Determining human exposure and sensory detection of odorous compounds released during showering.
Pesticides in house dust from urban and farmworker households in California: an observational measurement study.

Predictors of indoor fine particulate matter in infants' bedrooms in Denmark.

Principal component analysis of indicator PCB profiles in breast milk from Poland.

Critical evaluation of approaches in setting indoor air quality guidelines and reference values.

Polycyclic and nitro musks in indoor air: a primary school classroom and a women's sport center.

Temporal and spatial patterns of ambient endotoxin concentrations in Fresno, California.

The Breathe-Easy Home: the impact of asthma-friendly home construction on clinical outcomes and trigger exposure.

Evaluation of dioxin-like activities in settled house dust from Vietnamese E-waste recycling sites: relevance of polychlorinated/brominated dibenzo-p-dioxin/furans and dioxin-like PCBs.

Polybrominated diphenyl ethers (PBDEs) in the indoor environment and associations with prenatal exposure.

Lessons learned from a woodstove changeout on the Nez Perce Reservation.

Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust.

Impact of temperature on the initial emittable concentration of formaldehyde in building materials: experimental observation.

Indoor air quality differences between urban and rural preschools in Korea.

Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China.
Is ventilation duct cleaning useful? A review of the scientific evidence.
Zuraimi MS.

Windsor, Ontario exposure assessment study: design and methods validation of personal, indoor, and outdoor air pollution monitoring.

Mould and Dampness

Association of residential dampness and mold with respiratory tract infections and bronchitis: a meta-analysis.
Fisk WJ, Eliseeva EA, Mendell MJ.

A study on Aspergillus species in houses of asthmatic patients from Sari City, Iran and a brief review of the health effects of exposure to indoor Aspergillus.
Hedayati MT, Mayahi S, Denning DW.

Building-associated neurological damage modeled in human cells: a mechanism of neurotoxic effects by exposure to mycotoxins in the indoor environment.
Karunasena E, Larrañaga MD, Simoni JS, Douglas DR, Straus DC.

The effect of air-conditioning parameters and deposition dust on microbial growth in supply air ducts.

Visually observed mold and moldy odor versus quantitatively measured microbial exposure in homes.

Light and Radiation

Risk of malignancies in relation to terrestrial gamma radiation in a Swedish population cohort.
Tondel M, Lindgren P, Hellström L, Löfman O, Fredrikson M.

Prevention measures against radiation exposure to radon in well waters: analysis of the present situation in Finland.
Turtiainen T, Salonen L.

vан Dillen T, Dekkers F, Bijwaard H, Kreuzer M, Grosche B.

Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans.
Windsor, Ontario exposure assessment study: design and methods validation of personal, indoor, and outdoor air pollution monitoring.

Smoking / Environmental Tabacco Smoke

Smoking and Environmental Tobacco Smoke play an important role in housing and health topics. However, it would go beyond the scope of this newsletter to present here all relevant literature on ETS. We therefore decided to list only selected literature. For further information, we wish you to refer to WHO Collaborating Centre on Tobacco Control.

Prenatal environmental tobacco smoke exposure and early childhood body mass index.
Braun JM, Daniels JL, Poole C, Olshan AF, Hornung R, Bernert JT, Khoury J, Needham LL, Barr DB, Lanphear BP.

Determinants of serum cotinine and hair cotinine as biomarkers of childhood secondhand smoke exposure.
Kalkbrenner AE, Hornung RW, Bernert JT, Hammond SK, Braun JM, Lanphear BP.

Evaluation of behavioural change towards smoking in Turkish fathers having 0-1 year old infants during prenatal and postnatal periods.
Karatay G, Alp N.

Secondhand smoke transfer in multiunit housing.
King BA, Travers MJ, Cummings KM, Mahoney MC, Hyland AJ.

Association of Secondhand Smoke Exposure with Pediatric Invasive Bacterial Disease and Bacterial Carriage: A Systematic Review and Meta-analysis.
Lee CC, Middaugh NA, Howie SR, Ezzati M.

Worldwide burden of disease from exposure to second-hand smoke: a retrospective analysis of data from 192 countries.
Oberg M, Jaakkola MS, Woodward A, Peruga A, Prüss-Ustün A.
Lancet. 2011 Jan 8;377(9760):139-46.

Exposure to second-hand smoke is common in many countries, and affects one third of all non-smokers worldwide. It is estimated that around one in 100 deaths globally is due to second-hand smoke, which causes more than 600 000 people to die each year. Some 165 000 of these deaths are among children. Some developing regions are among the most affected by health impacts from second-hand smoke. The study was coordinated by WHO and is the first to estimate the global impact of second-hand smoke. It concludes by suggesting that substantial health gains could be made by creating completely smoke-free environments in all indoor spaces, public places and public transport, complemented by educational strategies such as voluntary smoke-free home policies. The article is available on the WHO website http://www.who.int/quantifying_ehimpacts/publications/smoking.pdf.

Cigarette characteristic and emission variations across high-, middle- and low-income countries.
O’Connor RJ, Wilkins KJ, Caruso RV, Cummings KM, Kozlowski LT.
Passive smoking in babies: the BIBE study (Brief Intervention in babies. Effectiveness).

Tobacco control legislation in India: past and present.
Mehrotra R, Mehrotra V, Jandoo T.

The exposure to environmental tobacco smoke and attitudes towards tobacco control measures—a comparison of 5 European countries.
Thyrian JR, Panagiotakos DB, Polychronopulos E, Willemsen MC, Zatoński W, John U.

Carcinogenic PAH in waterpipe charcoal products.
Sepetdjian E, Saliba N, Shihadeh A.

Smoke-free homes: an intervention to reduce second-hand smoke exposure in households.

Determinants of Blood Pressure in Preschool Children.
The Role of Parental Smoking.
Simonetti GD, Schwertz R, Klett M, Hoffmann GF, Schaefer F, Wühl E.
Circulation 2011, Jan 10; [Epub ahead of print].

Tobacco-smoke exposure in children who live in multiunit housing.
Wilson KM, Klein JD, Blumkin AK, Gottlieb M, Winickoff JP.

Lifestyle and cancer risk.
Weiderpass E.

Home Safety

Orofacial and dental trauma of young children in Dunedin, New Zealand.
Chan YM, Williams S, Davidson LE, Drummond BK.

Inhalational lung injury associated with humidifier "white dust".
Daftary AS, Deterding RR.

The burden of childhood injuries and evidence based strategies developed using the injury surveillance system in Pasto, Colombia.
Espitia-Hardeman V, Borse NN, Dellinger AM, Betancourt CE, Villareal AN, Caicedo LD, Portillo C.
Inj Prev. 2011 Feb;17 Suppl 1:i38-44.
Does fall history influence residential adjustments?
Leland N, Porell F, Murphy SL.

Experience from community based childhood burn prevention programme in Bangladesh: Implication for low resource setting.
Burns. 2011 Mar 9. [Epub ahead of print].

Unintentional childhood injury patterns, odds, and outcomes in Kampala City: an analysis of surveillance data from the National Pediatric Emergency Unit.
Mutto M, Lawoko S, Nansamba C, Ovuga E, Svanstrom L.

Modification of the home environment for the reduction of injuries.

Traumatic television tip-overs in the pediatric patient population.
Rutkoski JD, Sippey M, Gaines BA.

Unintentional injuries among older adults in northern Sweden--a one-year population-based study.
Saveman BI, Björnstig U.

Child home injury mortality in Europe: a 16-country analysis.
Sengoelge M, Hasselberg M, Laflamme L.

Epidemiology of balcony fall-related injuries, United States, 1990-2006.
Shields BJ, Burkett E, Smith GA.

Housing and Ageing Society

Environmental assessment and modification to prevent falls in older people.
Pighills AC, Torgerson DJ, Sheldon TA, Drummond AE, Bland JM.

Quality of life and barriers in the urban outdoor environment in old age.
Rantakokko M, Iwarsson S, Kauppinen M, Leinonen R, Heikkinen E, Rantanen T.

Incidence and seasonality of falls amongst old people receiving home help services in a municipality in northern Sweden.
Vikman I, Nordlund A, Näslund A, Nyberg L.
Int J Circumpolar Health. 2011 Apr 11. [Epub ahead of print].

The effects of a walking exercise program on fall-related fitness, bone metabolism, and fall-related psychological factors in elderly women.
Yoo EJ, Jun TW, Hawkins SA.

Housing Conditions

Neighborhoods, daily activities, and measuring health risks experienced in urban environments.
Basta LA, Richmond TS, Wiebe DJ.
Association between children's blood lead levels, lead service lines, and water disinfection, Washington, DC, 1998-2006.

Reduced acute hospitalisation with the healthy housing programme.

Young adolescents' independent mobility, related factors and association with transport to school. A cross-sectional study.

Young children in urban areas: Links among neighborhood characteristics, weight status, outdoor play, and television watching.

Housing environments and child health conditions among recent Mexican immigrant families: a population-based study.

Chlorpyrifos exposure and urban residential environment characteristics as determinants of early childhood neurodevelopment.

Family and home correlates of children’s physical activity in a multi-ethnic population: the cross-sectional child heart and health study in england (CHASE).

Feeding practices and blood lead levels in infants in Nagpur, India.

Evaluating housing quality, health and safety using an Internet-based data collection and response system: a cross-sectional study.

Family pet ownership during childhood: findings from a UK birth cohort and implications for public health research.

Thermal Comfort / Energy

Outdoor temperature is associated with serum HDL and LDL.
Altered cardiac repolarization in association with air pollution and air temperature among myocardial infarction survivors.

Coping with chaos: how disordered contexts promote stereotyping and discrimination.
Stapel DA, Lindenberg S.
Science. 2011 Apr 8;332(6026):251-3.

Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability.
Uejio CK, Wilhelmi OV, Golden JS, Mills DM, Gwino SP, Samenow JP.

Thermal comfort modelling of body temperature and psychological variations of a human exercising in an outdoor environment.
Vanos JK, Warland JS, Gillespie TJ, Kenny NA.

Urban Planning / Built Environment

Manganese and lead in children's blood and airborne particulate matter in Durban, South Africa.
Batterman S, Su FC, Jia C, Naidoo RN, Robins T, Naik I.

Health impact assessment of a reduction in ambient PM(2.5) levels in Spain.

Ambient wood smoke exposure and respiratory symptoms in Tasmania, Australia.
Bennett CM, Dharmage SC, Matheson M, Gras JL, Markos J, Mészáros D, Hopper J, Walters EH, Abramson MJ.

Identifying GIS measures of the physical activity built environment through a review of the literature.
Butler EN, Ambs A MH, Reedy J, Bowles HR.

Built environment predictors of active travel to school among rural adolescents.

Perception of the social and built environment and physical activity among Northeastern Brazil adolescents.
de Farias Júnior JC, Lopes Ada S, Mota J, Santos MP, Ribeiro JC, Hallal PC.

A systematic review of built environment factors related to physical activity and obesity risk: implications for smart growth urban planning.
Durand CP, Andalib M, Dunton GF, Wolch J, Pentz MA.

The development of a walkability index: application to the Neighborhood Quality of Life Study.
Frank LD, Sallis JF, Saelens BE, Leary L, Cain K, Conway TL, Hess PM.
Size distribution of airborne particles controls outcome of epidemiological studies.
Harrison RM, Giorio C, Beddows DC, Dall'Osto M.

The association between overweight and opportunity structures in the built environment: a multi-level analysis among elementary school youth in the PLAY-ON study.
Leatherdale ST, Pouliou T, Church D, Hobin E.

[Environmental approaches in the prevention of obesity in children and adolescents.]
Loss J, Leitzmann M.

Effect of street connectivity and density on adult BMI: results from the Twin Cities Walking Study.
McDonald KN, Oakes JM, Forsyth A.
J Epidemiol Community Health. 2011 Jan 17. [Epub ahead of print].

Assessing the options for local government to use legal approaches to combat obesity in the UK: putting theory into practice.
Mitchell C, Cowburn G, Foster C.

Impact on fetal growth of prenatal exposure to pesticides due to agricultural activities: a prospective cohort study in Brittany, France.

Contributions of built environment to childhood obesity.
Rahman T, Cushing RA, Jackson RJ.

Mortality and morbidity among people living close to incinerators: a cohort study based on dispersion modeling for exposure assessment.

Air pollution and birth outcomes: a systematic review.
Shah PS, Balkhair T; Knowledge Synthesis Group on Determinants of Preterm/LBW births.

Community built environment factors and mobility around senior wellness centers: the concept of “safe senior zones”.
Shendell DG, Johnson ML, Sanders DL, Nowakowski AC, Yang J, Jeffries CD, Weisman JE, Moulding M.

The association between community physical activity settings and youth physical activity, obesity, and body mass index.
Slater SJ, Ewing R, Powell LM, Chaloupka FJ, Johnston LD, O'Malley PM.

Relationship between the physical environment and physical activity in older adults: A systematic review.
Van Cauwenberg J, De Bourdeaudhuij I, De Meester F, Van Dyck D, Salmon J, Clarys P, Deforche B.

Allotment gardening and health: a comparative study among allotment gardeners and their neighbors without an allotment.
Van den Berg AE, Van Winsum-Westra M, De Vries S, Van Dillen SM.
Neighborhood archetypes for population health research: Is there no place like home?
Weden MM, Bird CE, Escarce JJ, Lurie N.
Health Place. 2010 Nov 12.

Public health campaigns and obesity: A critique.
Walls H, Peeters A, Proietto J, Mcneill JJ.

Built environment influences on healthy transportation choices: bicycling versus driving.
Winters M, Brauer M, Setton EM, Teschke K.

Community Health Environment Scan Survey (CHESS): a novel tool that captures the impact of the built environment on lifestyle factors.
Wong F, Stevens D, O'Connor-Duffany K, Siegel K, Gao Y.

Child pedestrian injuries and urban change.
Yiannakoulas N, Scott DM, Rowe BH, Voaklander DC.

Climate Change

Climate Change and Health in the Urban Environment: Adaptation Opportunities in Australian Cities.
Bambrick HJ, Capon AG, Barnett GB, Beaty RM, Burton AJ.

Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies.
Oudin Åström D, Bertil F, Joacim R.

Housing, heat stress and health in a changing climate: promoting the adaptive capacity of vulnerable households, a suggested way forward.
Maller CJ, Strengers Y.
Health Promot Int. 2011 Feb 8. [Epub ahead of print].

Social Inequality

Poverty-associated risk factors for wheezing in the first year of life in Honduras and El Salvador.

Territoriality and disadvantage among young people: an exploratory study of six British neighbourhoods.
Kintrea K, Bannister J, Pickering J.

Childhood disadvantage and emergency admission rates for common presentations in London: an exploratory analysis.
Kyle RG, Kukanova M, Campbell M, Wolfe I, Powell P, Callery P.

Neighbourhood walking and regeneration in deprived communities.
Mason P, Kearns A, Bond L.
Health Place. 2011 Mar 11. [Epub ahead of print].
Urban Planning and Health Equity.
Northridge ME, Freeman L.
J Urban Health. 2011 Mar 2. [Epub ahead of print].

Voice, exit and efficacy: dealing with perceived neighbourhood decline without moving out.
vander Land M, Doff W.

Does living in a poor neighbourhood result in network poverty? A study on local networks, locality-based relationships and neighbourhood settings.
van Eijk G.

Wide inequities in health are hidden in urban settings, says report.
Zarocostas J.
BMJ. 2010 Nov 18;341:c6586.

Noise

Single and combined effects of air, road, and rail traffic noise on sleep and recuperation.
Basner M, Müller U, Elmenhorst EM.

Parameters of well-being and subjective health and their relationship with residential traffic noise exposure - A representative evaluation in Switzerland.
Brink M.
Environ Int. 2011 Mar 16. [Epub ahead of print].

Transportation noise and exposed population of an urban area in the Republic of Korea.
Ko JH, Chang SI, Kim M, Holt JB, Seong JC.
Environ Int. 2011 Feb;37(2):328-34.

Work stress, worries, and pain interact synergistically with modelled traffic noise on cross-sectional associations with self-reported sleep problems.

Aircraft noise, air pollution, and mortality from myocardial infarction.
Huss A, Spoerri A, Egger M, Röösli M; Swiss National Cohort Study Group.

Local determinants of road traffic noise levels versus determinants of air pollution levels in a Mediterranean city.

Noise, sleep and poor health: Modeling the relationship between road traffic noise and cardiovascular problems.
Fyhri A, Aasvang GM.

Road traffic noise and stroke: a prospective cohort study.

The influence of hearing impairment on sleep quality among workers exposed to harmful noise.
Test T, Canfi A, Eyal A, Shoam-Vardi I, Sheiner EK.
Miscellaneous

Environmental health indicators and a case study of air pollution in Latin American cities.
Bell ML, Cifuentes LA, Davis DL, Cushing E, Telles AG, Gouveia N.

Development of a multi-pathway probabilistic health risk assessment model for swimmers exposed to chloroform in indoor swimming pools.
Chen MJ, Lin CH, Duh JM, Chou WS, Hsu HT.

Spatial misalignment in time series studies of air pollution and health data.
Peng RD, Bell ML.

Modeled infiltration rate distributions for U.S. housing.
Persily A, Musser A, Emmerich SJ.

Environmental monitoring and analysis of faecal contamination in an urban setting in the city of Bari (Apulia region, Italy): health and hygiene implications.
Tarsitano E, Greco G, Decaro N, Nicassio F, Lucente MS, Buonavoglia C, Tempesta M.

Neighborhood archetypes for population health research: Is there no place like home?
Weden MM, Bird CE, Escarce JJ, Lurie N.
Health Place. 2010 Nov 12.

Event Announcements

In this section we will inform you about upcoming events with relevance to housing and health. If you know of any international event, please let us know!

Tag gegen Lärm - International Noise Awareness Day 2011 🇩🇪
Date: April 27, 2011
Venue: Germany
Further Information: [TAG GEGEN LÄRM - Aktionen 2011](#)

18. WaBoLu-Innenraumtage 🇩🇪
Energiesparlampen und andere Innenraumfragen
Date: May 30 - June 1, 2011
Venue: Berlin, Germany
Further Information: [18. WaBoLu-Innenraumtage](#)

Indoor Air 2011
International Society of Indoor Air Quality and Climate (ISIAQ)
Date: June 5-10, 2011
Venue: Austin, Texas, USA
Further Information: [ISIAQ](#)

Urban Transport 2011
15th International Conference on Urban Transport and the Environment
Date: June 6-8, 2011
Venue: Pisa, Italy
Further Information: [Urban Transport 2011 | 11 Conferences](#)
Global Health Council 2011 - Annual Conference on Global Health
Securing an Healthier Future in an Changing World
Date: June 13, 2011
Venue: Washington D.C., USA.
Further Information: Global Health Council 2011 Conference

Healthy Buildings 2012
The International Society of Indoor Air Quality and Climate
Date: July 8-12, 2012
Venue: Brisbane, Australia
Further Information: Healthy Buildings 2012

International Medical Geography Symposium
Date: July 10-15, 2011
Venue: Durham, United Kingdom
Further Information: International Medical Geography Symposium - Durham University

10th International Conference on Mercury as a Global Pollutant
Date: July 24-29, 2011
Venue: Halifax, Nova Scotia, Canada

Environmental Health Risk 2011
6th International Conference on the Impacts of Environmental Factors on Health
Date: July 25-27, 2011
Venue: Riga, Latvia
Further Information: Environmental Health Risk 2011 | 11 Conferences

10th International Congress on Noise as a Public Health Problem
Date: July 24-28, 2011
Venue: London, United Kingdom
Further Information: International Commission on the Biological Effects of Noise (ICBEN)

6. Deutscher Allergie Kongress 🇩🇪
Date: September 8-10, 2011
Venue: Wiesbaden, Germany
Further Information: Deutscher Allergiekongress

Air Pollution 2011
19th Conference on Modelling, Monitoring and Management of Air Pollution
Date: September 19-21, 2011
Venue: Malta
Further Information: Air Pollution 2011 | 11 Conferences

19th International Congress of Biometeorology
Date: December 5-9, 2011
Venue: Auckland, New Zealand
Further Information: ICB 2011

Healthy Buildings 2012
10th International Conference on Indoor air Quality and Climate
Date: July 8-12, 2012
Venue: Brisbane, Queensland, Australia
Further Information: http://www.isiaq.org/events/healthy-buildings-2012

Air Quality Eight
Date: October 24-27, 2012
Venue: Arlington, Virginia, USA
Further Information: Air Quality VIII
Message Board

In this section we will inform you about activities and projects related to housing and health that are being carried out by WHO or the WHO CC. This may relate to ongoing activities and projects, as well as invitations to participate in data collections or case study projects.

WHO work on indoor and built environments

WHO to develop guidelines on housing and health

WHO Headquarter has started a project to develop policy and technical guidance on healthy housing in the coming years. A first meeting took place in WHO Headquarter in mid-October 2010, bringing together a variety of experts on housing and health from countries all over the globe. The expert group made a call for the development of international guidelines that can be accessed at http://www.who.int/hia/housing/en/index.html

Currently, the Guideline Development Group is being established to meet for the first time in June 2011 and identify the topics to be covered in detail.

WHO Indoor Air Quality Guidelines: selected pollutants

In late 2010, WHO has published the second volume of the Indoor Air Quality Guideline series, dealing with selected pollutants and chemicals. The guidelines address indoor concentrations of various pollutants (benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons, radon and tri- and tetrachloroethylene). The guidelines can be accessed at http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf and a German and Russian executive summary is available.

German: http://www.euro.who.int/__data/assets/pdf_file/0008/132956/e94535_exsumG.pdf
Russian: http://www.euro.who.int/__data/assets/pdf_file/0009/132957/e94535_exsumR.pdf

Ongoing work on the IAQ Guidelines addresses the problem of indoor air pollution from household fuel use, which will become the third volume of the IAQ Guideline series.

Housing and health in relation to climate change mitigation

WHO's Health in the Green Economy series is reviewing the evidence about expected health impacts of greenhouse gas mitigation strategies in light of mitigations options for key economic sectors, one of them being housing. Policy briefings have been developed for the United Nations Framework Convention on Climate Change (COP16) in December 2010 to summarise initial key findings from this project and identify expected health impacts from policies to mitigate climate change in the housing, transport, household energy and the health sector. The policy brief on housing can be accessed at http://www.who.int/hia/hgebrief_housing.pdf

Housing conditions: a major component of environmental inequalities

Housing is one of the major aspects covered by a HO project to report on the magnitude of environmental health inequalities in the WHO European region. Started in 2010, the project identified 14 environmental health inequality indicators, six of which relate to housing conditions (such as hygiene, water supply, thermal comfort and crowding). In 2011, these indicators will be implemented and developed into a first WHO European report on environmental health inequalities. For further details, see http://www.euro.who.int/__data/assets/pdf_file/0013/130243/e94628.pdf

Water safety in buildings – training and information material

Poor design and management of water systems in buildings can cause outbreaks of disease but the health risks are preventable and can be readily controlled. However, evidence from outbreak detec-
tion suggests that the overall trend is increasing. WHO Headquarter has now addressed the issue of water safety in buildings by the publication of training and information material, providing guidance for managing water supplies in buildings where people may consume or use water. For further details, see http://www.who.int/water_sanitation_health/publications/2011/9789241548106/en/index.html

WHO Publication “Burden of disease from environmental noise”

The health impacts of environmental noise are a growing concern. At least one million healthy life years are lost every year from traffic-related noise in the western part of Europe. This publication summarizes the evidence on the relationship between environmental noise and health effects, including cardiovascular disease, cognitive impairment, sleep disturbance, tinnitus, and annoyance. For further details, see http://www.euro.who.int/en/what-we-publish/abstracts/burden-of-disease-from-environmental-noise.-quantification-of-healthy-life-years-lost-in-europe

Imprint

Publisher

Landesgesundheitsamt Baden-Württemberg
im Regierungspräsidium Stuttgart
Baden-Württemberg State Health Office

WHO Collaborating Centre for Housing and Health
Nordbahnhofstrasse 135
70191 Stuttgart

The work of the WHO CC on housing and health is funded by Bundesministerium für Gesundheit, Germany.

Editors:

Dr. Bernhard Link, Dr. Annette Rebmann
Dr. Guido Fischer, Dr. Hanswerner Jaroni, Dr. Snezana Jovanovic, Stefan Kluge, Dr. Karin Otzelberger, Dr. Iris Zöllner

phone +49 (0)711• 904 35000
fax +49 (0)711• 904 35105
who.cc@rps.bwl.de
www.whocc-housing-and-health.de